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ABSTRACT 
When experimental designs are infeasible, researchers must resort to the use of 
observational data from surveys, censuses, and administrative records. Because 
assignment to the independent variables of observational data is usually nonran- 
dom, the challenge of estimating causal effects with observational data can be 
formidable. In this chapter, we review the large literature produced primarily by 
statisticians and econometricians in the past two decades on the estimation of 
causal effects from observational data. We first review the now widely accepted 
counterfactual framework for the modeling of causal effects. After examining 
estimators, both old and new, that can be used to estimate causal effects from 
cross-sectional data, we present estimators that exploit the additional informa- 
tion furnished by longitudinal data. Because of the size and technical nature of 
the literature, we cannot offer a fully detailed and comprehensive presentation. 
Instead, we present only the main features of methods that are accessible and 
potentially of use to quantitatively oriented sociologists. 

INTRODUCTION 

Most quantitative empirical analyses are motivated by the desire to estimate 
the causal effect of an independent variable on a dependent variable. Although 
the randomized experiment is the most powerful design for this task, in most 
social science research done outside of psychology, experimental designs are 
infeasible. Social experiments are often too expensive and may require the 
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unethical coercion of subjects. Subjects may be unwilling to follow the experi- 
mental protocol, and the treatment of interest may not be directly manipulable. 
For example, without considerable power and a total absence of conscience, 
a researcher could not randomly assign individuals to different levels of edu- 
cational attainment in order to assess the effect of education on earnings. For 
these reasons, sociologists, economists, and political scientists must rely on 
what is now known as observational data-data that have been generated by 
something other than a randomized experiment-typically surveys, censuses, 
or administrative records. 

The problems of using observational data to make causal inferences are 
considerable (Lieberson 1985, LaLonde 1986). In the past two decades, how- 
ever, statisticians (e.g. Rubin, Rosenbaum) and econometricians (e.g. Heckman, 
Manski) have made considerable progress in clarifying the issues involved when 
observational data are used to estimate causal effects. In some cases, this hard- 
won clarity has permitted the development of new and more powerful methods 
of analysis. This line of research is distinct from the work of sociologists and 
others who in the 1970s and 1980s developed path analysis and its general- 
ization, covariance structure analysis. Despite their differences, both areas of 
research are often labeled causal analysis. 

Statisticians and econometricians have adopted a shared conceptual frame- 
work that can be used to evaluate the appropriateness of different estimators in 
specific circumstances. This framework, to be described below, also clarifies 
the properties of estimators that are needed to obtain consistent estimates of 
causal effects in particular applications. 

Our chapter provides an overview of the work that has been done by statis- 
ticians and econometricians on causal analysis. We hope it will provide the 
reader with a basic appreciation of the conceptual advances that have been 
made and some of the methods that are now available for estimating causal 
effects. Because the literature is massive and often technical, we do not at- 

tempt to be comprehensive. Rather, we present material that we believe is most 
accessible and useful to practicing researchers. 

As is typical of the literature we are reviewing, we use the language of exper- 
iments in describing these methods. This usage is an indication of the advances 
that have been made; we now have a conceptual framework that allows us to use 
the traditional experimental language and perspective to discuss and analyze 
observational data. Throughout this chapter, we write of individuals who are 
subject to treatment, and we describe individuals as having been assigned to ei- 
ther a treatment or a control group. The reader, however, should not assume that 
the thinking and methods we review apply only to the limited set of situations in 
which it is strictly proper to talk about treatment and control groups. In almost 
any situation where a researcher attempts to estimate a causal effect, the analysis 
can be described, at least in terms of a thought experiment, as an experiment. 



ESTIMATION OF CAUSAL EFFECTS 

The chapter consists of three major sections. The first presents the conceptual 
framework and problems associated with using observational data to estimate 
causal effects. It presents the counterfactual account of causality and its associ- 
ated definition of a causal effect. We also discuss the basic problems that arise 
when using observational data to estimate a causal effect, and we show that 
there are two distinct sources of possible bias: Outcomes for the treatment and 
control groups may differ even in the absence of treatment; and the potential 
effect of the treatment may differ for the treatment and control groups. We then 
present a general framework for analyzing how assignment to the treatment 
group is related to the estimation of a causal effect. 

The second section examines cross-sectional methods for estimating causal 
effects. It discusses the bounds that data place on the permissible range of a 
causal effect; it also discusses the use of control variables to eliminate potential 
differences between the treatment and control groups that are related to the 
outcome. We review standard regression and matching approaches and discuss 
methods that condition on the likelihood of being assigned to the treatment. 
These latter methods include the regression discontinuity design, propensity 
score techniques, and dummy endogenous variable models. This section also 
discusses the use of instrumental variables to estimate causal effects, presenting 
their development as a method to identify parameters in simultaneous equation 
models and reviewing current research on what instrumental variables identify 
in the presence of different types of treatment-effect heterogeneity. 

The third section discusses methods for estimating causal effects from lon- 
gitudinal data. We present the interrupted time-series design, then use a rela- 
tively general model specification for the structure of unobservables to compare 
change-score analysis, differential linear growth rate models, and the analysis 
of covariance. The key lesson here is that no one method is appropriate for all 
cases. This section also discusses how to use data to help determine which 
method is appropriate in a particular application. 

The paper concludes with a discussion of the general importance of the 
methods reviewed for improving the quality of quantitative empirical research 
in sociology. We have more powerful methods available, but more important, 
we have a framework for examining the plausibility of assumptions behind 
different methods and thus a way of analyzing the quality and limitations of 
particular empirical estimates. 

BASIC CONCEPTUAL FRAMEWORK 
In the past two decades, statisticians and econometricians have adopted a com- 
mon conceptual framework for thinking about the estimation of causal effects- 
the counterfactual account of causality. The usefulness of the counterfactual 
framework is threefold. It provides an explicit framework for understanding 
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(a) the limitations of observational data, (b) how the treatment assignment pro- 
cess may be related to the outcome of interest, and (c) the type of information 
that is provided by the data in the absence of any assumptions. 

The Counterfactual Account Of Causality 
Discussions of causality in the social sciences often degenerate into fruitless 
philosophical digressions (e.g., see McKim & Turner 1997, Singer & Marini 
1987). In contrast, the development of the counterfactual definition of causality 
has yielded practical value. With its origins in the early work on experimen- 
tal designs by Fisher (1935), Neyman (1923, 1935), Cochran & Cox (1950), 
Kempthorne (1952), and Cox (1958a,b), the counterfactual framework has been 
formalized and extended to nonexperimental designs in a series of papers by 
Rubin (1974, 1977, 1978, 1980, 1981, 1986, 1990; see also Pratt & Schlaifer 
1984). However, it also has roots in the economics literature (Roy 1951, Quandt 
1972). The counterfactual account has provided a conceptual and notational 
framework for analyzing problems of causality that is now dominant in both 
statistics and econometrics. Holland (1986), Pratt & Schlaifer (1988), and Sobel 
(1995, 1996) provide detailed exegeses of this work. 

Let Y be an interval level measure of an outcome of interest, either contin- 
uous or discrete or a mixture of the two. Examples are earnings, mathematics 

aptitude, educational attainment, employment status, and age at death. As- 
sume that individuals can be exposed to only one of two alternative states but 
that each individual could a priori be exposed to either state. Each state is 
characterized by a distinct set of conditions, exposure to which potentially af- 
fects the outcome of interest Y. We refer to the two states as treatment and 
control.1 

Assume that one group of individuals is assigned to be observed in the treat- 
ment state and that a second group of individuals is assigned to be observed 
in the control state. The key assumption of the counterfactual framework is 
that individuals assigned to these treatment and control groups have potential 
outcomes in both states: the one in which they are observed and the one in 
which they are not observed. In other words, each individual in the treatment 
group has an observable outcome in the treatment state and an unobservable 
counterfactual outcome in the control state. Likewise, each individual in the 
control group has an observable outcome in the control state and an unob- 
servable counterfactual outcome in the treatment state. Thus, the framework 
asserts that individuals have potential outcomes in all states, even though they 
can actually only be observed in one state. 

1Any two states to which individuals could be assigned or could choose to enter can be considered 
treatment and control. The potential outcome framework also can be generalized to any number of 
alternative sets of treatment conditions. 
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Formalizing this conceptualization, the potential outcomes of each individ- 
ual unit of analysis are defined as the true values of Y that would result from 

exposure to the alternative sets of conditions that characterize the two states 
named treatment and control. More formally, let yt and Yi equal the potential 
outcomes for each individual i that would result from exposure to the treatment 
and control conditions. We assume that both potential outcomes exist in the- 
ory for every individual, although at most only one potential outcome can be 
observed for each individual. 

The causal effect of the treatment on the outcome for each individual i is 
defined as the difference between the two potential outcomes in the treatment 
and control states: 

si = Yt - Y . 1. 

Because both Yt and Yi exist in theory, we can define this individual-level 
causal effect. However, as detailed below, because we cannot observe both Yf 
and Yf for any single individual, we cannot observe or thus directly calculate 
any individual-level causal effects. 

First note that this definition of a causal effect, while intuitively appealing, 
makes several assumptions.2 The most crucial assumption among these is that 
a change in treatment status of any individual does not affect the potential out- 
comes of other individuals. Known as the stable unit treatment value assumption 
(SUTVA) (see Rubin 1980, 1986, 1990), this assumption is most commonly 
violated when there is interference across treatments (i.e. when there are inter- 
actions between treatments). The classical example is the analysis of treatment 
effects in agricultural research-rain that surreptitiously carries fertilizer from 
a treated plot to an adjacent untreated plot. Aside from simple interference, 
the SUTVA may also be violated in other situations, especially when "macro 
effects" of the treatment alter potential outcomes (see Garfinkel et al. 1992, 
Heckman et al. 1998). Consider the case where a large job training program is 
offered in a metropolitan area with a competitive labor market. As the supply of 
graduates from the program increases, the wage that employers will be willing 
to pay graduates of the program will decrease. When such complex effects are 
present, the powerful simplicity of the counterfactual framework vanishes. 

Why can we not observe and calculate individual-level causal effects? In 
order to observe values of Y, we must assign individuals to be observed in 
one of the two states. To formalize this observation rule, define Ti as a dummy 
variable equal to 1 if an individual is assigned to the treatment group and equal 

20ne important assumption that we do not discuss is that the treatment must be manipulable. 
For example, as Holland (1986) argued, it makes no sense to talk about the causal effect of gender 
or any other nonmanipulable individual trait alone. One must explicitly model the manipulable 
mechanism that generates an apparent causal effect of a nonmanipulable attribute. 
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to 0 if an individual is assigned to the control group. The observed Yi are 
equal to Yi = Yit when Ti = 1 and Yi = Yic when Ti = 0. As these definitions 
reveal, causal inference can be seen as a problem of missing data. The observed 
Yi do not contain enough information to identify individual-level causal effects 
because individuals cannot be observed under both the treatment and the control 
conditions simultaneously.3 

The main value of this counterfactual framework is that causal inference can 
be summarized by a single question: Given that the Si cannot be calculated for 
any individual and therefore that Yit and Yic can be observed only on mutually 
exclusive subsets of the population, what can be inferred about the distribution 
of the bi from an analysis of Yi and T ? 

Average Effects And The Standard Estimator 
Most of the literature has focused on the estimation of the average causal effect 
for a population. Let yt be the average value of yit for all individuals if they are 
exposed to the treatment, and let yc be the average value of Yic for all individuals 
if they are exposed to the control. More formally, yt is the expected value of 
Yt in the population, and yc is the expected value of Yi in the population. The 
average treatment effect in the population is 

= y - yC 2. 

or, again more formally, the expected value of the difference between yt and 
Yc in the population.4 

Because yt and yc are unobservable (or missing) on mutually exclusive 
subsets of the population, yt and yc cannot both be calculated. However, yt and 
yc can potentially be estimated, although not very well or without considerable 
difficulty except in special circumstances. Most methods discussed in this paper 
attempt to construct from observational data consistent estimates of yt and yc 
in order to obtain a consistent estimate of 3. 

For example, consider the most common estimator, which we call the stan- 
dard estimator for the average treatment effect. Let YiET be the expected value 
of Y/t for all individuals in the population who would be assigned to the treat- 
ment group for observation, and let YiEc be the expected value of yc for all 

3When one has longitudinal data, an effective strategy may be to use a person as his own control. 
This strategy only works if age does not otherwise affect the outcome and there are no exogenous 
period-specific effects. If change with age or period effects is possible, some type of adjustment is 
needed. We discuss methods that do this in the section on longitudinal analysis. 

4In many presentations of the counterfactual framework, formal E[.] notation is used. The 

average treatment effect of Equation 2 is written as E[S] = E[Yt - YC]. The standard estimator in 

Equation 3 is considered an attempt to estimate E[Yt I T = 1] - E[Yc I T = 0]. 
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individuals in the population who would be assigned to the control group for 
observation. Both of these quantities can be calculated and thus effectively esti- 
mated by their sample analogs, the mean of Yi for those actually assigned to the 
treatment group and the mean of Yi for those actually assigned to the control 
group. The standard estimator for the average treatment effect is the difference 
between these two estimated means: 

= iET-ieC 3. 

where the hats on all three terms signify that they are the sample analog esti- 
mators (sample means) of the expectations defined above. 

Note the two differences between Equations 2 and 3. Equation 2 is defined 
for the population, whereas Equation 3 represents an estimator that can be 
applied to a sample drawn from the population. All individuals in the population 
contribute to the three terms in Equation 2. However, each sampled individual 
can be used only once to estimate either YiT or YC. As a result, the way 
in which individuals are assigned (or assign themselves) to the treatment and 
control groups determines how effectively the standard estimator S estimates 
the true average treatment effect S. As we demonstrate, many estimators are 
extensions of this standard estimator that seek to eliminate the bias resulting 
from inherent differences between the treatment and control groups. 

To understand when the standard estimator consistently estimates the true 
average treatment effect for the population, let YEC and YCET be defined analo- 
gously to Yt T and YCc above, and let 7r equal the proportion of the population 
that would be assigned to the treatment group. Decompose the average treat- 
ment effect in the population into a weighted average of the average treatment 
effect for those in the treatment group and the average treatment effect for those 
in the control group and then decompose the resulting terms into differences in 
average potential outcomes: 

8 = ^rSiT + (1 - r)8iEC 

(YiET_ 
- 

ET) + (1 - i) (YiEc 
- 

e4.) 
= [nET + (1 -r)YiEC] 

- 
[rYCET + (1 - n)Yic] 

=yt_yc. 

The quantities Yic and YiET that appear explicitly in the second and third 
lines of Equation 4 cannot be directly calculated because they are based on 
unobservable values of Y. If we assume that Y,ET = YiE and yiEC = ieT' 
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then through substitution starting in the third line of (4): 

-tt = [rYiT + (1 - 7)Yic] 
- 

[iET + (1 - )Yc] 

= 
[7'YET + (1 - 7t)YT] - [nYCC + (1 - 7r)YEc] 5. 

_ yt yc = iET - YieC- 

Thus, a sufficient condition for the standard estimator to consistently estimate 
the true average treatment effect in the population is that YtET = Yec and 

Yic = YECT. In this situation, the average outcome under the treatment and 
the average outcome under the control do not differ between the treatment and 
control groups. In order to satisfy these equality conditions, a sufficient condi- 
tion is that treatment assignment Ti be uncorrelated with the potential outcome 
distributions of it and YiC. The principal way to achieve this uncorrelatedness 
is through random assignment to the treatment. 

By definition, observational data are data that have not been generated by 
an explicit randomization scheme. In most cases, treatment assignment will 
be correlated with the potential outcome variables. As a result, the standard 
estimator will usually yield inconsistent estimates of the true average treatment 
effect in the population when applied to observational data. 

An important caveat is that the average treatment effect a is not always the 

quantity of theoretical interest. Heckman (1992, 1996, 1997) and Heckman et 
al. (1997b) have argued that in a variety of policy contexts, it is the average 
treatment effect for the treated that is of substantive interest. The essence of 
their argument is that in deciding whether a policy is beneficial, our interest is 
not whether on average the program is beneficial for all individuals but whether 
it is beneficial for those individuals who are either assigned or who would assign 
themselves to the treatment. 

For example, if we are interested in determining whether a particular voca- 
tional education program in a high school is beneficial, it makes little sense to 
ask whether its effect is positive for all high school students. For college-bound 
students, the effects of the program may be negative. Even for non-college- 
bound students, the program may have positive effects only for some students. 
To the degree that students can estimate their likely benefit of enrolling in the 

program before actually doing so, we would expect that those students for whom 
the expected benefits are positive will be more likely to enroll in the program. 
The appropriate policy question is whether the program effects for this group 
of "self-selecting" students are positive and sufficiently large to justify the pro- 
gram costs. The policy-relevant piece of information in need of estimation is 
the size of the treatment effect for the treated. The average treatment effect for 
all students in the school is of little or no policy relevance. 
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As discussed below, it is also the case that in many contexts the average 
treatment effect is not identified separately from the average treatment effect 
for the treated. In most circumstances, there is simply no information available 
on how those in the control group would have reacted if they had instead received 
the treatment. This is the basis for an important insight into the potential biases 
of the standard estimator. 

Define the baseline difference between the treatment and control groups as 
(YiET 

- YiEC). This quantity can be thought of as the difference in outcomes 
between the treatment and control groups in the absence of treatment. With a lit- 
tle algebra, it can be shown that Standard estimator = True average treatment 
effect + (Difference in baseline Y) + (1 - 7r) (Difference in the average treat- 
ment effect for the treatment and control groups), or in mathematical notation: 

YiET Y- =i + (iCT 
- 

EC) + (1 - 7)(^iT 
- 

iC). 6. 

Equation 6 shows the two possible sources of bias in the standard estimator. 
The baseline difference, (YiET 

- 
YiE), is equal to the difference between the 

treatment and control groups in the absence of treatment. The second source of 
bias (^iET - SiEC), the difference in the treatment effect for those in the treat- 
ment and control groups, is often not considered, even though it is likely to be 
present when there are recognized incentives for individuals (or their agents) to 
select into the treatment group. Instead, many researchers (or, more accurately, 
the methods that they use) simply assume that the treatment effect is constant in 
the population, even when common sense dictates that the assumption is clearly 
implausible (Heckman 1997, Heckman et al. 1997b, Heckman & Robb 1985, 
1986, 1988; JJ Heckman, unpublished paper). 

To clarify this decomposition, consider a substantive example-the effect 
of education on an individual's mental ability. Assume that the treatment is 
college attendance. After administering a test to a group of young adults, we 
find that individuals who have attended college score higher than individuals 
who have not attended college. There are three possible reasons that we might 
observe this finding. First, attending college might make individuals smarter 
on average. This effect is the average treatment effect, represented by 3 in 
Equation 6. Second, individuals who attend college might have been smarter 
in the first place. This source of bias is the baseline difference represented by 
(Y ET- YiEC) in Equation 6. Third, the mental ability of those who attend college 
may increase more than would the mental ability of those who did not attend 
college had they in fact attended college. This source of bias is the differential 
effect of treatment, represented by (i ET - Si C) in Equation 6. 

To further clarify this last term in the decomposition, assume that those 
who have attended college and those who have not attended college had the 
same (average) initial mental ability. Assume further that only those who then 
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attended college would have benefitted from doing so. If the treatment and 
control groups are of equal size, the standard estimator would overestimate 
the true average treatment effect by a factor of two. In this example, and in 
many other situations, the standard estimator yields a consistent estimate of the 
average treatment effect for the treated, not the average treatment effect for the 
entire population. 

Equation 6 specifies the two sources of bias that need to be eliminated from 
estimates of causal effects from observational data. The remainder of the paper 
examines how this goal can be accomplished. Most of the discussion focuses 
on the elimination of the baseline difference (YCe - YEC). Fewer techniques 
are available to adjust for the differential treatment effects component of the 
bias (SiET - /iEC). 

Treatment Assignment Model 
To proceed further, we need to develop a basic model for the assignment mech- 
anism that generates the treatment and control groups. Our presentation of the 

assignment model follows Heckman & Robb (1985, 1986, 1988). Above, we 

specified that each individual has two potential outcomes, Yt and Yf, corre- 

sponding to potential exposure to the treatment and control. We noted that, in 

general, for any one individual only one of these two potential outcomes can 
be observed. 

To develop an assignment model, we first write the potential outcomes Yit 
and Yc as deviations from their means: 

yic 
= yC + ui, 

Yit = + Uti. 

Combining these two expressions with the observation rule given by the defi- 
nition of the treatment assignment dummy variable Ti, the equation for any Yi 
is 

Yi = yc + T'(y}t -_ +) + C + Ti (t 
- 

UC) 

= yc + Ti? + ui, 

where ui = uc + Ti(u - uC). Equation 7 is known as the structural equa- 
tion. This equation provides another way of thinking about the problem of 

consistently estimating the treatment effect. For the standard estimator-which 
is equivalent to the coefficient on Ti when Equation 7 is estimated by ordinary 
least squares (OLS)-to be a consistent estimate of the true average treatment 
effect, Ti and ui must be uncorrelated. 

Consider a supplemental equation, known as the assignment or selection 

equation, that determines Ti and is written in what is known as an index structure. 
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Let T/* be a latent continuous variable: 

Ti* = Zia +vi, 8. 

where Ti = 1 if Ti* > 0 and Ti = 0 if Ti* < 0, and where Zi is a row vector 
of values on various exogenous observed variables that affect the assignment 
process, a is a vector of parameters that typically needs to be estimated, and vi 
is an error term that captures unobserved factors that affect assignment. 

Equations 7 and 8 are general. Additional covariates Xi can be included in 
Equation 7, as shown below in Equation 10, and Xi and Zi may have variables in 
common. Both Zi and vi may be functions of an individual's potential outcome 
after exposure to the treatment (Yit), an individual's potential outcome after 
exposure to the control (YiC), or any function of the two potential outcomes, 
such as their difference (Yit - Yi). 

We can distinguish between two different ways that Ti and the error term 
in Equation 7, ui, can be correlated (Heckman & Robb 1986, 1988; Heckman 
& Hotz 1989). When Zi and ui are correlated, but ui and vi are uncorrelated, 
we have "selection on the observables." In this case, some observed set of 
factors in Zi is related to yc and/or yt. This form of selection results in data 
that are sometimes characterized as having ignorable treatment assignment- 
the probability of being assigned to the treatment condition is only a function 
of the observed variables (Rosenbaum & Rubin 1983, Rosenbaum 1984a,b). 
The second case is where ui is correlated with vi, resulting in "selection on the 
unobservables." Known as nonignorable treatment assignment, in this case the 
probability of assignment is a function of unobserved variables (and possibly 
observed variables as well). In the following sections, we examine methods that 
attempt to deal with both types of selection bias. Not surprisingly, remedies 
for bias from selection on the observables are easier to implement than are 
remedies for selection on the unobservables. 

CROSS-SECTIONAL METHODS 

Bounds For Treatment Effects 
In a series of articles that have culminated in a book, Manski has investigated 
the bounds that are consistent with the data when weak assumptions alone are 
maintained (Manski 1995; see also Robins 1989). In this section, we point to 
the fact that in some circumstances the data, without any auxiliary assumptions, 
provide some information on the size of the treatment effect. Our discussion 
follows Manski (1994, 1995). 

To see that the data can potentially bound a treatment effect, consider a case 
with a dichotomous zero-one outcome. The average treatment effect, g, can- 
not exceed 1. The maximum treatment effect occurs when YtET = YEC = 1 
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Table 1 Hypothetical example illustrating the calculation of 
bounds on treatment effects 

Mean Outcome 

Groups Yc Yt 

Observed mean outcomesa 
Control Y = 0.3 yt =? 

Treatment yc =?- Yi = 0.7 

Largest possible treatment effectb 
Control YEc = 0.3 Yte = 1 

Treatment YCT =0 yE = 0.7 

Small possible treatment effectc 
Control YE = 0.3 EC = 0 

Treatment c =1 Y T = 0.7 

aStandard estimator of treatment effect is 0.4. 
bImplied upper bound of average treatment effect is 0.7. 
CImplied lower bound of average treatment effect is -0.3. 

and YET = YCEc = O. Similarly, the average treatment effect cannot be less 
than -1. The minimum treatment effect occurs when YiET = YiEC = 0 and 

YiC = 1. Thus, 3 is contained in an interval of length 2; more specifi- 
cally, 8 E [-1, 1]. 

Now assume that YPET = 0.7 and YEC = 0.3, as is shown in the hypothetical 

example in Table 1. Both quantities could be estimated from the data, and we 
do not consider the problem of sampling error. The standard estimator for the 
treatment effect in this case is YiET - YiEC = 0.4. The largest possible treat- 
ment effect (Table 1) indicates the values of YiEC and Y,eT that would produce 
the largest estimate of 6, 0.7. The smallest possible treatment effect (Table 1) 
indicates the values that would produce the smallest estimate of 3, -0.3. Thus, 
the constraints implied by the data guarantee that 8 E [-0.3, 0.7], an interval 
of length 1, which is half the length of the maximum interval calculated before 
values for Y}E and YCic were obtained from the data. Manski calls this interval 
the no-assumptions bound. Although this bound is still wide, it has substan- 

tially reduced our uncertainly about the range of 3. Manski (1995) shows that 
with a zero-one outcome variable, the no-assumptions bound will always be of 

length 1. 
In general (see Manski 1994), the treatment effect will only be bounded when 

the outcome variable itself is bounded or when one is analyzing a function of 
the distribution of the dependent variable that is bounded. Because YtE and 

YiET are both unobserved, in the absence of any restriction they can take on any 
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value from minus infinity to plus infinity. Thus, in the absence of any known 
restriction on Y}EC and YiET, a can take on any value from minus infinity to 

plus infinity. 
The goal of Manski's research is to analyze how additional assumptions nar- 

row the bound for the estimated treatment effect while recognizing that the 
more assumptions an analysis entails, the less credible it is. He argues that 
researchers should first attempt to learn as much as possible about a treatment 
effect maintaining the weakest possible assumptions. Manski shows that weak 
and often plausible assumptions can substantially narrow the no-assumptions 
bound. For example, in many situations it may be reasonable to assume that 
the treatment effect cannot be negative (or alternatively positive) for any indi- 
vidual. Manski (1997) labels this assumption the monotone treatment response 
assumption. Under this assumption, the lower bound for the treatment effect 
is 0. Thus, for the example presented in Table 1, the bound for the treatment 
effect would be [0, 0.7]. 

Another possible assumption is that those who actually receive the treatment 
have higher average outcomes under potential exposure to both the treatment 
and control (i.e. YET > YiEC and Ye YEc). Manski & Pepper (1998) 
present this monotone treatment selection assumption with the example of the 
effect of education on wages. This case is equivalent to assuming that individu- 
als with higher educational attainments would on average receive higher wages 
than would individuals with lower educational attainments, even if counterfac- 
tually the two groups had the same levels of educational attainment. For the 
example presented in Table 1, the monotone treatment selection assumption 
implies that the standard estimator would be an upper bound for the average 
treatment effect. Therefore, if we invoke the monotone treatment response and 
selection assumptions together, the bound on the treatment effect is [0, 0.4], 
which is considerably more narrow than the no-assumptions bound. Applica- 
tions of Manski's approach can be found in Manski & Nagin (1998) and in 
Manski et al. (1992). We discuss Manski's work further below. 

Regression Methods 
The basic strategy behind regression analysis and related methods is to find 
a set of control variables that can be included in the regression equation in 
order to remove the correlation between the treatment variable and the error 
term. In order to understand the relationship between regression and other 
cross-sectional methods, it is worth formalizing this idea. Assume that we 
are interested in estimating Equation 8 above and that we believe the treatment 
indicator, Ti, is correlated with the error term, ui, because treatment assignment 
is not random. We could attempt to deal with this problem by controlling for 
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various observed Xs, estimating a regression equation of the form 

Yi =bo + TS + Xib + wi. 9. 

Estimating Equation 9 by OLS is equivalent to following the double residual 
regression procedure (Malinvaud 1970, Goldberger 1991): (a) Regress Yi on 
Xi and calculate Y* = Yi - Yi; (b) regress Ti on Xi and calculate Ti* = T - T; 
and (c) estimate Y* = 7T*6 + wi, where w* = wi - Xib. This three step 
procedure will yield the same estimate of a as OLS on Equation 9. Thus, OLS 
regression is equivalent to estimating the relationship between residualized 
versions of Yi and Ti from which their common dependence on other variables 
has been subtracted out. 

A number of techniques, all falling under what Heckman & Robb (1985) label 
control function estimators, can be understood as variants of this strategy. We 
discuss only a few such methods where a control function (i.e. some function 
of one or more variables) is entered into a regression equation in an attempt to 
eliminate the correlation between the treatment indicator variable and the error 
term. As is discussed below, instrumental variable techniques are based on a 
strategy that is the mirror image of the control function approach. 

ANALYSIS OF COVARIANCE AND MATCHING The analysis of covariance is 
probably the most common technique used to adjust for possible differences 
between treatment and control groups. Although it was originally developed 
to adjust for chance differences in observed Xs across treatment and control 
groups in randomized designs, it is now routinely used to attempt to control 
for differences between treatment and control groups in observational studies. 
Technically, the analysis of covariance is just a specific application of regression 
analysis. We consider a model somewhat more general than the standard model. 

If we had a large data set and believed that either Yc or bi varied as a function 
of the Xs, then one approach would be to stratify the sample on the Xs and 
carry out the analysis separately within each stratum. We could then estimate 
separate average treatment effects, Ax, for each stratum. If a single treatment 
effect estimate was desired, we could then average these estimated effects across 
the strata, weighting each estimated treatment effect by the relative size of its 
stratum. 

An analogous set of analyses could be mounted in a regression framework. 
Let the potential outcomes Yit and Yi depend on some set of variables Xi: 

ic = b + Xib + ei 10a. 

and 

yt= b + Xi(b + c) + e. 10b. 
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The observed data can be written as a combination of these two equations: 

Yi = b + Ti (bt - b) + Xib + Ti (Xic) + ei. 11. 

For individuals for whom Xi = 0, the treatment effect in Equation 11 is equal to 
(bt - bc). The Xib term represents how the baseline level of Yi, the Yic, varies 
with the observed Xi. The hope is that by including the Xib term, we eliminate 
the baseline difference between the treatment and control groups, (YET - YiEC). 

The Xic term represents how the treatment effect, Si, varies with Xi. This 
term is not typically included in a standard analysis of covariance model. The 
hope is that by including the Xic term, we eliminate the difference in the 
treatment effects between the treatment and control groups, (3ieT - iiEc). This 

may often be an unrealistic assumption, because it implies that the researcher 
can forecast an individual's treatment effect just as accurately as the individual 
himself can. If individuals have pertinent information that is unavailable to the 
researcher (i.e. information that is not contained in the Xs), then it is likely 
that there will be differences in the treatment effects between the treatment and 
control groups that are not captured by observed Xs (Heckman 1989, 1992, 
1996, 1997). Note that the treatment effect in Equation 11 is equal to (bt - 
bc) + Xic. Obviously, this is not the treatment effect for the entire population 
but rather for individuals with characteristics Xi. 

One problem with the regression approach is that it imposes a linearity con- 
straint. Nonlinear terms can be added, but it is often difficult to know how the 
nonlinearity should be approximated. As White (1981) has shown, polynomial 
and related expansions may inadequately model nonlinearity and lead to biased 
estimates. 

An alternative technique that avoids this problem is matching. Common in 
biomedical research but not in social scientific research, matching is closely 
related to the stratification procedure described above. Smith (1997) provides 
an excellent introduction for social scientists. Matching has several advantages. 
First, it makes no assumption about the functional form of the dependence 
between the outcome of interest and the other Xs. Second, matching ensures 
that only those portions of the distribution of the Xs in the observed data that 
contain individuals in both the treatment and control groups enter the estimation 
of the treatment effect.5 Third, because fewer parameters are estimated than 

5In two important empirical papers, Heckman et al (1997, 1998a) show that the bias due to 
selection on the unobservables, although significant and large relative to the size of the treatment 
effect, is small relative to the bias that results from having different ranges of Xs for the treatment 
and control groups and different distributions of the Xs across their common range. Matching 
solves both of the latter problems, although the average effect is not for the total population but 
only for that portion of the population where the treatment and control groups have common X 
values. 
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in a regression model, matching is more efficient. Efficiency can be important 
with small samples. A major problem with the traditional matching approach 
is that unless an enormous sample of data is available and there are more than a 
few Xs, it may be difficult to find both treatment and control cases that match. 
[See below for the ingenious solution to this problem developed by Rosenbaum 
& Rubin (1983)]. 

REGRESSION DISCONTINUITY DESIGN A key limitation of the analysis of co- 
variance and related designs is that they do not directly conceptualize how the 
Xs are related to the likelihood of being assigned to the treatment group. Rather, 
the approach is to model the determinants of Yi, thereby including Xs that are 
believed to affect the outcome and that may also be associated with assign- 
ment to the treatment group. By including many determinants of Yi, one hopes 
to eliminate all differences between the treatment and control groups that are 
related to the outcome but that are not due to the treatment itself. 

The philosophy behind regression discontinuity designs and propensity score 
methods is quite different from the strategy behind analysis of covariance. 
The strategy is to attempt to control for observed variables, Zi, that affect 
whether an individual is assigned to the treatment group or the control group. By 
controlling for Zs that affect the treatment assignment, one hopes to eliminate 
any correlation between Ti and ui in Equation 7. 

The regression discontinuity design (Cook & Campbell 1979, Judd & Kenny 
1981, Marcantonio & Cook 1994) is the simplest way of relating an observed 
variable, Zi, to the assignment to a treatment group. The basic strategy is to find 
a Zi that is related to the assignment of treatment in a sharply discontinuous way, 
as in Figure 1. The jump on the vertical axis at the point of treatment on the hori- 
zontal axis is the estimate of the main treatment effect. In Figure 1, the treatment 
effect is even more complex. The treatment also affects the slope of the rela- 

tionship between Z and Y. Thus, the size of the treatment effect varies with Z. 
The strength of the regression discontinuity design is determined by the 

accuracy of the estimate of the conditional relationship between Y and Z in 
the absence of treatment over the range of Z that receives the treatment. If 
the relationship between Z and Y is nonlinear, this can be highly problematic. 
Figure 2 provides an example. As can be seen from Figure 2, if we poorly 
estimate the values of Y that would be observed in the absence of treatment, 
we poorly estimate the effect of the treatment. The problem here is directly 
related to matching. One of the strengths of matching is that it ensures that we 
have both control and treatment cases over the range of Z that is relevant to the 

analysis. In the regression discontinuity design, the opposite is the case. There 
are no values of Z that contain both treatment and control cases. The power of 
the design hinges solely on the ability to extrapolate accurately. 
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Figure 1 The regression discontinuity design. Note: If Z > k, the individual receives the treat- 
ment. If Z < k, the individual does not receive the treatment. (Solid line) Observed outcome; 
(dashed line) the assumed outcome in the absence of treatment. 
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Figure 2 The regression discontinuity design with unrecognized nonlinearity. 
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PROPENSITY SCORES The essence of the regression discontinuity design is the 
direct tie between the treatment assignment and an observed variable Z. The 
propensity score method (Rosenbaum & Rubin 1983, 1984, 1985; Rosenbaum 
1984a,b, 1995; Rubin 1991; Rubin & Thomas 1996) provides a much more gen- 
eral approach that is nonetheless based on the same strategy as the regression 
discontinuity design. The propensity score for an individual is simply the prob- 
ability that an individual, with a set of observed characteristics Zi, is assigned 
to the treatment group instead of the control group, or 

P(Zi) = Prob(T = 1 I Zi). 12. 

If treatment assignment is purely a function of the observed Zs (or in the lan- 
guage used above, selection is only on the observables), then conditional on 
the Zs, assignment is random with respect to the outcomes.6 The importance 
of this result is that the analysis can then safely proceed after either matching 
or stratifying on the propensity score, P(Zi). In general, the propensity score 
will not be known but can be estimated using standard methods such as a logit 
or probit model. 

Rosenbaum & Rubin (1983) show that there is nothing to be gained by 
matching (or stratifying) in a more refined way on the variables in Z than on 
just the propensity scores alone that are a function of the variables in Z. The 

propensity score contains all the information that is needed to create a balanced 

design-a design where the treatment and control groups do not differ with 

respect to Z in any way that is also related to treatment assignment Ti. This 
fact is of enormous importance because it means that matching can be done on 
a single dimension. As a result, even when there are many variables in Z that 
determine treatment assignment, matching is still feasible. Stratification on the 

propensity score is typically feasible only with large data sets. 
A variety of matching schemes are possible. Nearest available matching on 

the estimated propensity score is the most common and one of the simplest (see 
Rosenbaum & Rubin 1985). First, the propensity scores for all individuals are 
estimated with a standard logit or probit model. Individuals in the treatment 
are then listed in random order.7 The first treatment case is selected, and its 

propensity score is noted, and then matched to the control case with the clos- 
est propensity score. Both cases are then removed from their respective lists, 

6See Rosenbaum & Rubin (1983) for a proof. Heckman et al (1997, 1998b) point out that this 

proof involves the true propensity score and that in most applications the propensity score needs 
to be estimated. It is unclear whether this is consequential. 

7In most empirical applications of matching techniques, the treatment group is considerably 
smaller than the control group. This need not be the case in all applications, and if the reverse is true, 
the nearest available matching scheme described here runs in the opposite direction. Treatment 
cases would be matched to the smaller subset of control cases. 
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the second treatment case is matched to the remaining control case with the 
closest propensity score, and so on, until all treatment cases have received a 
matched control case. Other matching techniques that use propensity scores 
are implemented by (a) using different methods and different sets of Zs to 
estimate propensity scores, (b) matching on some important Zs first and then 
on propensity scores second, (c) defining the closeness of propensity scores 
and Zs in different ways, and/or (d) matching multiple control cases to each 
treatment case (see Rosenbaum 1995, Rubin & Thomas 1996, Smith 1997). 

In principle, the propensity score can also be entered as a control variable in 
a regression model in a fashion similar to the inclusion of Xi in Equation 9 or 
11. Rubin & Rosenbaum have advocated matching because it implicitly deals 
with the problem of nonlinearity and uses fewer degrees of freedom, making it 
more efficient. To better understand the propensity-score method, it is useful, 
however, to consider the approach within a regression framework. 

Consider Equations 7 and 8 again. The assumption behind these two equa- 
tions is that Zi directly affects treatment assignment but does not directly affect 
either Yit or Yf. Zi, however, is potentially correlated with ui, which may include 
both observed and unobserved components. In some cases, the Zi may overlap 
with observed components of u i. However, we do not think of either the Zi or the 
propensity score P (Zi) as being determinants of the outcome. Thus, Zi does not 
belong in the structural Equation 7. Zi determines assignment, not the outcome. 

What are we doing if we enter the propensity score, or some nonlinear trans- 
formation of it, into Equation like 9 or 10, as if it were an X? Heckman & Robb 
(1986, 1988) have pointed out that Rosenbaum and Rubin's propensity-score 
method is one example of a control function. As discussed above, the goal when 
a control variable, in this case the propensity score, is entered into Equation 7 
as a regressor is to make the treatment assignment variable uncorrelated with 
the new error term. Above, we noted that conditional on the propensity score, 
assignment to the treatment group is random by construction. This means that 
by entering the propensity score, or some nonlinear transformation of it, into 
regression Equation 9, for example, we are "subtracting out" of Yi and Ti that 
component of their correlation that is due to the assignment process. 

To understand what we are doing further, consider Figure 3 where we are 
interested in estimating the effect of Ti on Yi, but we are concerned that Ti and 
ui might be correlated. There are two reasons they might be correlated. First, ui 
and Ti might be correlated because the Zi or equivalently the propensity score, 
P(Zi), and Ti are correlated. This is selection on the observables. Second, 
there is a possibility that Ti and ui are correlated because ui and vi are corre- 
lated. This is selection on the unobservables. The propensity-score method, 
however, assumes that all the selection is on the observables. Thus there is no 

677 



678 WINSHIP & MORGAN 

Zi U1 

v, >- Ti- Yi 

Figure 3 The propensity score strategy for the estimation of a treatment effect when selection is 
nonrandom. 

arrow connecting ui and vi in Figure 3. This is a very strong assumption. It 
implies that there are no common omitted variables that determine both treat- 
ment assignment and the outcome. Estimation of the propensity-score model 
amounts to estimating the effect of Ti on Yi where both variables have been 
residualized with respect to P (Zi). As Figure 3 indicates, conditional on Zi, or 
equivalently the propensity score P(Zi), Ti and ui are assumed to be uncorre- 
lated. As a result, estimation by OLS using residualized Yi and Ti consistently 
estimates the treatment effect. 

SELECTION MODELS Heckman's early work in the late 1970s on selection 
bias, particularly his lambda method, has received some attention in sociology. 
Since that time, considerable new research has appeared, primarily in the econo- 
metrics literature. Winship & Mare (1992) provide a review of much of this 
literature. Heckman's closely related work on dummy endogenous variables, 
pursued at the same time as his well-known selection-bias research, has re- 
ceived less attention (Heckman 1978). Although his terminology is different, 
his work also addresses the estimation of treatment effects when assignment is 
nonrandom. 

The selection and nonrandom assignment problems are intimately connected. 
In essence, the nonrandom assignment problem is two selection problems in 
one. If the focus is only on yc, we have a selection problem because Yi is only 
observed for individuals who are exposed to the control. Similarly, we have 
a selection problem if we focus solely on Yt because it is only observed for 
individuals who are exposed to the treatment. In both cases, we are concerned 
that individuals have selected (or been selected) on the dependent variable and 
thus that treatment exposure is a function of yt, yc, or some function of the 
two. When this occurs, standard regression techniques yield an inconsistent 
estimate of the treatment effect. 

Although completed prior to most of Rubin's and Rosenbaum's work on 

propensity scores, Heckman's work on the dummy endogenous variable 
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problem can be understood as a generalization of the propensity-score ap- 
proach. It is also another example of a control function estimator.8 As with 
Rosenbaum's and Rubin's propensity score method, Heckman focuses on the 
selection Equation 9. Heckman, however, is interested in the conditional mean 
of Ti*, the latent continuous variable, rather than the probability that Ti = 1. 
Specifically, using the linearity of Equation 8, he is interested in 

E[Ti* I Zia, Ti] = Zia + E[vi I Zia, Ti]. 13. 

Note that the expected value here of Ti* is a function of both Zia and Ti. This 
allows Heckman to take account of selection that may be a function of both the 
observables Zi and the unobservables vi. As shown in Figure 3, we now assume 
that ui and vi may be correlated. This correlation would occur if respondents 
know more about their potential outcomes under the treatment and control than 
the researcher and use their private information when "selecting" themselves 
into the treatment or control group. 

If vi is only correlated with observed components of ui (i.e. the Xs in our nota- 
tion), then the selection problem is easily solved. We can adjust for nonrandom 
assignment by simply controlling for these Xs when estimating Equation 8, as 
in the analysis of covariance and its extensions that are discussed above. How- 
ever, if vi is correlated with unobserved components of ui, a more complicated 
solution is required. 

If we could observe vi, we could enter it into Equation 7 or 11 as a con- 
trol variable, adopting a strategy similar in spirit to Rosenbaum's and Rubin's 
propensity score method. In so doing, we would control for a function of the 
assignment process in order to create residualized Yi and Ti so that the residu- 
alized Ti would no longer be correlated with the new error term. The brilliance 
of Heckman's research was his recognition that although one could not ob- 
serve vi directly, one could calculate its expected value from Equation 13 and 
that this expected value of vi could be used as a control variable (function) to 
consistently estimate Equation 7. 

In order to calculate the expected value of vi in Equation 13, one needs to 
make an assumption about the distribution of vi. Typically, the distribution is 
assumed to be normal. If f(.) is the normal density function and F(.) is the 
corresponding cumulative distribution function, then 

f(Zia) 
E[vi I Zia, T1] = [ (Z) when T/ = 1 14a. 

[1 - F(Zia)] 

8The general selection model considered by Heckman (1979) can also be estimated by maximum 
likelihood or nonlinear least squares, although this involves stronger distributional assumptions than 
does the lambda method discussed here (see Winship & Mare 1992 for a brief discussion). 
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and 

-f(Zia) 
E[vi I Zia, Ti] = (Z when Ti = 0. 14b. 

F(Zia) 

Equation 14a simply gives the formula for lambda in a standard sample selection 
problem. In the treatment context, one would calculate a lambda for those in 
the treatment condition (Ti = 1) using Equation 14a and a lambda for those in 
the control equation using Equation 14b. These lambdas would then be entered 
into Equation 7 or, similarly, Equation 11 as controls, analogous to the inclusion 
of two more Xs. Thus, the procedure here is identical to Heckman's lambda 
method for correcting for selection bias, except that two distinct lambdas, one 
for the treatment and one for the control group, are utilized. 

As Heckman and many others have come to recognize, estimates from his 
method can be sensitive to assumptions about the distribution of vi. This issue 
is discussed in Winship & Mare (1992). Typically, if one is estimating, for 
example, Equation 11, there should be Zs in the selection equation that are not 
also Xs. Recently, Heckman and his colleagues (1998a) have suggested that 
one might, in the spirit of Rubin's and Rosenbaum's propensity score method, 
match on lambda. This strategy is similar to methods proposed by Powell (1987) 
and Honore & Powell (1994) for dealing with sample selection. 

Instrumental Variables 
When an independent variable in a regression model is endogenous (i.e. cor- 
related with the error term), the traditional approach in econometrics is to use 
instrumental variables. In our context, if there is some variable (or set of vari- 
ables) that affects assignment but does not affect the outcome, then this variable 
(or set of variables) can be used as an instrument to deal with the possibility 
that assignment to treatment is nonrandom. The power of the instrumental vari- 
able approach is derived solely from the assumption that the instrument only 
affects the outcome indirectly through the independent variables in the model. 
In general, this assumption cannot be tested. 

Instrumental variable techniques were first developed by economists to esti- 
mate simultaneous equation models with jointly determined supply and demand 
equations from a set of competitive markets (Hood & Koopmans 1953). For 

any one market, only one point is observed-the competitive equilibrium price 
and quantity at the intersection of the supply and demand curves. In order to 
estimate the demand curve, a variable is needed that shifts the supply curve. 
One can then observe different points of intersection between the demand curve 
and the shifted supply curve. Similarly, in order to estimate the supply curve, a 
second variable is needed that shifts the demand curve so that one can observe 
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Figure 4 The instrumental variable strategy for the estimation of a treatment effect when selection 
is nonrandom. 

different points of intersection between the supply curve and the shifted 
demand curve. Variables that fulfill these functions are instrumental variables 
for quantity supplied and quantity demanded, respectively. 

TRADITIONAL INSTRUMENTAL VARIABLES In the counterfactual causality 
framework outlined above, an instrument is a variable that affects assignment 
but does not directly affect either yit or YC. Consider the simple path model in 
Figure 4, analogous to Figure 3, for the observed Yi. In order to simplify the 
discussion, assume that ui only contains unobserved determinants of Yi (i.e. 
there are no Xs). Equivalently, assume that the effects of any Xs have already 
been conditioned out. In Figure 4, the potential instrument Z* is assumed to be 
uncorrelated with ui. Contrast this with Figure 3, where Zi or more accurately 
the propensity score, P(Zi), is assumed to be (strongly) correlated with ui. In 
Figure 3, the strength of the correlation between Zi and ui is sufficiently strong 
so that ui and vi, and thus ui and Ti, are assumed to be uncorrelated. Figures 3 
and 4 show that Zi and Z* relate to ui in totally opposite ways. 

Ignoring scale factors, or similarly assuming that all variables have been 
standardized, we can see that in Figure 4 the covariance between Z* and Yi 
is Sa if the covariance between Z* and Ti is a and a is the direct effect of Ti 
on Yi (i.e. the effect of T, on Yi not including its indirect effect through ui). 
Thus, we can estimate the treatment effect as a = Cov(Yi, Z*)/Cov(Ti, Z*). 

One way of understanding instrumental variables is in terms of an exclu- 
sion restriction-the instrumental variable only affects the outcome indirectly 
through the treatment variable. In the previous section, we discussed the use of 
control functions-residualizing Yi and Ti with respect to some Xi and Zi (or 

681 



682 WINSHIP & MORGAN 

set of Xs and Zs) such that the residualized Ti is no longer correlated with the 
resulting error term. Instrumental variable techniques attempt to achieve the 
same goal of creating a new Ti that is uncorrelated with the resulting error term 
but do so in the opposite way. Instead of constructing residualized variables, 
instrumental variables construct predicted Yi and Ti where the predicted Ti is 
uncorrelated with the resulting error term. Analogous to steps (a) through (c) 
above, instrumental variable estimates can be obtained by the following two- 
stage procedure: (a) Regress Yi on Z* and calculate Yi; (b) regress Ti on Z* 
and calculate T.; and (c) estimate Yi = T i + wi. This three-step procedure 
illustrates another way of thinking about instrumental variables. We express 
both our dependent variable Yi and independent variable Ti as functions of a 
third variable Z* that is uncorrelated with the error term. Because Z* is un- 
correlated with the error term, the new predicted Ti, Ti, is uncorrelated with 
the error term. We can then regress the new predicted Yi, Yi, on Ti to obtain a 
consistent estimate of the treatment effect. 

A comparison of alternative strategies based on instrumental variables and 
control functions is instructive. When using a propensity score, or more gener- 
ally a control function strategy, we look for control variables, as in Figure 3, that 
are highly correlated with the error term in the structural equation so that after 

conditioning on these variables, the treatment indicator variable is no longer 
correlated with any portion of the error term that remains. When using an 
instrumental variables strategy, we look for a variable or set of variables, as in 

Figure 4, that is uncorrelated with the error term. If we can then express the 
outcome and treatment variables as functions of this variable or set of variables, 
we can calculate the treatment effect with a simple regression using the new 
variables that have been predicted from the instrument(s). 

A third way of thinking about instrumental variables is as naturally occurring 
randomization (Angrist et al. 1996, Heckman 1996). This perspective is easiest 
to appreciate when the instrument is binary, because the standard instrumental 
variable estimator takes the simple form 

rIV' (i I Z_ = 1)-(T Z * = 15. 

known in econometrics as the Wald estimator. The numerator is the standard 
estimator for the treatment effect of Z* on Yi, and the denominator is the standard 
estimator for the treatment effect of Z* on Ti. If Z* is randomly assigned, as in 
the case of a natural experiment, then both estimates are consistent. Because 
we assume that Z* only affects Yi through Ti, the ratio of these two effects 

consistently estimates the effect of Ti on Yi. 
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WEAKNESSES OF CONVENTIONAL IV TECHNIQUES Instrumental variable (IV) 
techniques have three main weaknesses (see Heckman 1997 for a detailed dis- 
cussion). First, assumptions that exclusion restrictions are valid are generally 
untestable and sometimes unbelievable. Second, the standard errors of IV es- 
timates can be large if the instrument is weak or the sample size is not large. 
Third, IVs only consistently estimate the true average treatment effect when 
the treatment effect is constant for all individuals, an assumption that is often 
unreasonable. We discuss each of these problems in turn. 

Even within economics, the assumed validity of an exclusion restriction is 
often controversial. Consider one of the most celebrated example of IVs- 
the draft lottery number as an instrument for veteran status in estimating the 
effect of military service on earnings (Angrist 1990). The case for excluding 
lottery number from the earnings equation that is the primary interest of the 
study is the randomization of the draft lottery (numbers assigned by day of 
birth). However, differential mortality patterns may lead to sample selection 
that spoils the randomization (Moffitt 1996). In addition, employers may behave 
differently with respect to individuals with different lottery numbers, investing 
more heavily in individuals who are less likely to be drafted. As a result, lottery 
number may be a direct, though probably weak, determinant of future earnings 
(Heckman 1995, 1997). 

IV point estimates of treatment effects are often accompanied by wide con- 
fidence intervals.9 The variance of the IV estimator for a bivariate regression 
with a single instrument is 

Var(Blv) = nC Ti V Z*) 16. 
n Cov(T/, Z*)2' 

where n is the sample size and o,2 is the variance of the error term. The standard 
error of an IV estimate is inversely proportional to both the covariance between 
Ti and Z* and the sample size. To obtain precise estimates, either the sample 
size must be unusually large and/or Ti and Zi must be strongly correlated. 
The latter case has led researchers to describe the perfect instrument as an 
apparent contradiction. A valid instrument must be uncorrelated with the error 
term but highly correlated with the treatment variable Ti. However, because Ti 
is correlated with the error term, motivating the use of instrumental variables 
in the first place, any variable that is highly correlated with Ti is likely also to 
be correlated with the error term, even though this is not necessarily so. 

Angrist & Krueger (1991, 1992) have capitalized on the large size of census 
datasets, using quarter of birth as an instrument for education when estimating 

9IV estimates always have larger variance than OLS estimates. Thus, even if it is known that OLS 
estimates are biased, they may be preferred to apparently unbiased IV estimates if the mean-squared 
error of OLS estimates is smaller. 
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the effect of education on earnings. Because of education laws regarding min- 
imum ages for school entry and later voluntary dropping out, individuals born 
just before and just after specific cutoff dates (e.g. January 1) are likely to differ 
in their levels of educational attainment. Angrist & Krueger (1991, 1992) find 
that quarter of birth is indeed (weakly) correlated with educational attainment 
and assume that it has no direct effect on earnings. Because of the large size of 
the census samples they utilize, they are able to obtain precise IV estimates of 
the effect of education on earnings. Their work, however, has received consid- 
erable criticism (Bound et al. 1995; also see Winship 1998). All these critics 
point out that the covariance of earnings with quarter of birth and the covariance 
of educational attainment with quarter of birth are both weak. In this case, the 
instrumental variable estimator is essentially the ratio of two very small num- 
bers, the covariance between quarter of birth and education and the covariance 
between quarter of birth and earnings. As a result, the IV estimate may poten- 
tially be unstable. Even if the direct effect of quarter of birth on earnings is 
small, it will make a substantial contribution to the covariance between these 
two variables. As a result, large biases in the IV estimate will occur. Bound et 
al (1995) discuss a variety of reasons that quarter of birth might have a small but 
non-zero direct effect on earnings. If this direct effect is non-zero, as they argue, 
then Angrist's and Krueger's IV estimates are likely to be substantially biased. 

As already noted, the instrumental variable estimator only estimates the av- 
erage treatment effect when the treatment effect is constant. What does it 
estimate when the treatment effect is heterogenous? Recent work by Imbens & 
Angrist (1994), Angrist & Imbens (1995), Angrist et al (1996), and Imbens & 
Rubin (1997) investigates this issue by extending the potential outcome frame- 
work discussed at the beginning of this paper. This extension is accomplished 
by assuming that treatment assignment is a function of an exogenous instru- 
ment Z*. 

For simplicity, assume that both the treatment and the instrument are binary, 
and that the instrument Z* is a randomly assigned incentive to enroll in the 
treatment program (e.g. a cash subsidy). When both the treatment and incen- 
tive are binary, individuals eligible to receive the treatment can be categorized 
into four mutually exclusive groups. Individuals who would only enroll in the 
program if offered the incentive and thus who would not enroll in the program 
if not offered the incentive are labeled compliers [i.e. individuals for whom 
Ti (Z* = 0) = 0 and T (Z* = 1) = 1]. Likewise, individuals who would only 
enroll in the program if not offered the incentive are called defiers [i.e. individu- 
als for whom Ti (Z* = 0) = 1 and T (Z* = 1) = 0]. Individuals who would al- 

ways enroll in the program, regardless of the incentive, are called always-takers 
[i.e. individuals for whom Ti(Z* = 0) = Ti(Z* = 1) = 1]. Finally, individ- 
uals who would never enroll in the program, regardless of the incentive, are 
called never-takers [i.e. individuals for whom Ti(Z* = 0) = Ti (Z* = 1) = 0]. 
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Based on the potential treatment assignment function, Imbens & Angrist 
(1994) define a monotonicity condition. In the binary-treatment-binary-instru- 
ment case, their condition requires that either Ti (ZT = 1) > Ti(Z* = 0) or 
Ti(Z* = 1) < Ti(Z* = 0) for all i. In words, the instrument must affect 
the treatment assignment of all individuals in the same direction and thus in 
a monotone fashion. For all individuals, an increase (decrease) in their Z* 
must either leave their treatment condition the same or, among individuals who 
change, change them in the same way. There may be either defiers or compliers 
but not both among those eligible to receive the treatment. Conventional IV 
methods make no assumptions about the coexistence of compliers and defiers.'0 

When an exclusion restriction is satisfied and when the treatment assignment 
process satisfies the monotonicity condition, the conventional IV estimate is an 
estimate of what is known as the local average treatment effect (LATE), the av- 
erage treatment effect for either compliers alone or for defiers alone, depending 
on which group exists in the population.1 LATE is the average effect for the 
subset of the population whose treatment assignment is affected by the instru- 
ment. The individual-level treatment effects of always-takers and never-takers 
are excluded in the calculation of LATE. When the monotonicity condition is 
not satisfied and treatment effect heterogeneity seems likely, the conventional 
IV estimator yields a parameter estimate that has no clear interpretation. 

LATE has three problems: (a) It is defined by the instrument, and thus dif- 
ferent instruments define different average treatment effects for the same group 
of individuals eligible to receive the treatment; (b) it is an average treatment 
effect for a subset of individuals that is inherently unobservable no matter what 
the instrument; (c) it is hard to interpret when the instrument measures some- 
thing other than an incentive to which individuals can consciously respond by 
complying or defying. 

BOUNDS WITH INSTRUMENTAL VARIABLES If IV techniques generally do not 

provide an estimate of the average treatment effect when there is treatment effect 
heterogeneity, then can IVs tell us anything at all about the average treatment 
effect? In a recent paper, Manski & Pepper (1998) investigate this question in 
some depth showing what can be learned when standard and when weaker IV 
assumptions are maintained. 

l?Note that when an instrument is valid, there must be at least some compliers or some defiers, 
otherwise the sample would be composed of only always-takers and never-takers. In this case, Z* 
would not be a valid instrument because it would be uncorrelated with treatment assignment. 

The exclusion restriction that defines LATE is stronger than the conventional exclusion re- 
striction that the instrument be mean-independent of the error term. Instead, Imbens & Angrist 
(1994) require that the instrument be fully independent of the error term. Imbens & Rubin (1997) 
argue that the strong independence restriction is more realistic because it continues to hold under 
transformations of the outcome variable. An assumption about the distribution of the outcome is 
thereby avoided. 
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Manski & Pepper (1998) define the traditional IV assumption in terms of 
mean independence. Specifically, in our notation, for arbitrary values s and s' 

E [Yit X, Z* = s] = E [Yit X, Z = s'] 17a. 

and 

E[Yc X, Z* = s] = E [Yc X, Z = s']. 17b. 

In words, Equations 17a and 17b require that the mean values of the outcomes 
in each subpopulation defined by values of Z* be equivalent to those in the 
population as a whole. The implication of this assumption is that the bounds 
assumption analysis, discussed earlier, and the monotone treatment response 
assumption alone also apply within each subpopulation defined by Z*. As a 
result, the bound on the treatment effect can be defined as the intersection 
of the bounds across subpopulations defined by Z* (see Manski 1994,1995; 
Manski & Pepper 1998). The common bound can only be narrowed with the 
aid of an IV if the bounds differ across subpopulations. Because the monotone 
treatment selection assumption, discussed briefly above, is an assumption about 
how treatment is assigned, it may or may not make sense to assume that it holds 
within subpopulations defined by the instrument. 

As we and many others have noted, the standard IV assumption is a strong 
condition. Manski & Pepper consider a weaker assumption, the monotone IV 

assumption (MIV). It states that for s > s' 

E [Yit X, Z* = s] > E[Yi l X, Z* = s' 18a. 

and 

E[Yic X, Z* = s] > E[YiC lX, Z* = s']. 18b. 

Thus, in Equations 18a and 18b, the mean values of both potential outcomes 
are weakly increasing functions in Z*. 

It is easier to demonstrate how the MIV condition bounds the mean of each 
outcome than it is to demonstrate directly how the MIV condition bounds 
the average treatment effect that is a function of these means. Without loss 
of generality, consider the mean of Yit in the population. Under the standard 
IV assumption, the upper bound for this mean will be equal to the smallest 

upper bound across the different subpopulations defined by the instrument. 
Under the MIV assumption, the upper bound of the conditional mean within 
the subpopulation defined by a particular value, s', of the instrument will be 

equal to the smallest upper bound for all subpopulations defined by values of 
the instrument greater than or equal to s'. The upper bound for the overall mean 
of yt will simply be the weighted average of the subpopulation upper bounds 
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where the weights are equal to the proportions of the sample in the various 

subpopulations defined by Z*. The determination of the analysis for the lower 
bound of Yit is analogous, as are the determination of the bounds on Yc. 

Manski & Pepper (1998) use the assumptions of monotone treatment re- 
sponse, monotone treatment selection, and MIV to determine the bounds on 
the effect of education on the logged wages of respondents to the National Lon- 
gitudinal Survey of Youth. When they invoke monotone treatment response 
and selection assumptions, they find that the bound for the effect of a twelfth 
year of schooling is [0, 0.199], that the bound for the effect of a fifteenth year of 
schooling is [0, 0.255], and that the bound for the effect of a sixteenth year of 
schooling is [0, 0.256]. When they use the Armed Forces Qualifying Test as a 
monotone instrumental variable while still maintaining the monotone treatment 
response and selection assumptions, they obtain narrower bounds respectively 
of [0, 0.126], [0, 0.162], and [0, 0.167]. Although these bounds are somewhat 
broader than one might wish, they are consistent with the range of estimates 
typically found in the literature. 

LONGITUDINAL METHODS 

The use of longitudinal data to estimate treatment effects has a long history. Lon- 
gitudinal data are useful because they allow individuals to serve as their own 
controls. The treatment effect for an individual can then be estimated as the 
change in the pretest and the posttest measurements of their outcome. Of course, 
any such estimator implicitly assumes that the outcome would have remained 
unchanged in the absence of treatment. As this is often an unrealistic assump- 
tion, we need to be able to estimate for those individuals in the treatment group 
how their outcomes would have evolved in the absence of treatment. 

There are two possible sources of information for constructing this coun- 
terfactual trajectory. First, if there are multiple pretest observations, it may be 
possible to extrapolate from these observations and estimate what the outcome 
would have been in the absence of treatment, assuming that the future is similar 
to the past. Second, if there is a control group, then the evolution of its outcome 
may be used to model what the outcome would have been in the absence of treat- 
ment, assuming that the treatment and control groups are similar in key respects. 

In the past two decades, many new techniques have been developed to uti- 
lize longitudinal data to estimate causal effects. Five important insights have 
emerged from this research: (a) in many circumstances, aggregate cohort- 
level data contain sufficient information to consistently estimate a causal ef- 
fect (Heckman & Robb 1985, 1986, 1988); (b) whenever possible, the data 
should be used to test the appropriateness of alternative models; (c) multi- 
ple measurements of the outcome before and after the treatment are essential 
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both for estimating sophisticated models and for testing the appropriateness of 
alternative specifications; (d) understanding the underlying behavior that gen- 
erates assignment to the treatment and control groups is critical to the proper 
modeling of suspected unobservable effects; and (e) it is only possible to es- 
timate the average treatment effect for the treated in most longitudinal mod- 
els because the average treatment effect for the entire population is typically 
unidentified. 

Heckman & Robb (1985, 1986, 1988) provide an extensive, although chal- 
lenging, review of alternative methods for estimating causal effects using lon- 
gitudinal (as well as cross-sectional) data. Space does not permit us to provide 
a similar review here. Moreover, we are confident that many readers would find 
a full exposition of the technical details of these models more overwhelming 
than illuminating. Our aim in this section, rather, is to provide an overview of 
commonly used methods, both old and new, and an assessment of their utility. 
In so doing, we hope to provide insight into the types of information that are 
available in longitudinal data to aid in the estimation of a causal effect. We 
discuss five basic models: interrupted time series models, fixed effect mod- 
els, differential linear growth rate models, analysis of covariance models, and 
covariance stationary models. 

Interrupted Time Series Design 
Perhaps the simplest data structure for estimating causal effects, the interrupted 
time series (ITS) design uses standard time series methods on multiple observa- 
tions over time for a single unit in order to estimate a causal effect of a variable. 
The core of the method involves the specification and estimation of the error 
structure (i.e. the nature of the interdependence of the period-specific error 
terms over time). A variety of textbooks provide comprehensive treatments of 
time series methods (e.g. Harvey 1990, Hamilton 1994, Judge et al 1985). We 
do not review them here. 

The logic of the ITS design parallels that of the regression discontinuity 
design discussed earlier. In an ITS analysis, time plays the role of Z, and there 
are now multiple measures over time for a single unit of analysis. The unit 
might be a country, city, cohort of individuals, or a single person. It is assumed 
that the treatment is introduced at a specific time and has an immediate impact. 
The goal is then to estimate how the dependent variable would evolve over time 
in both the presence and absence of a treatment effect. 

We now change notation slightly.. Let Yt be the outcome at time t. For an ITS 
analysis we do not need an "i" subscript because we are only analyzing data 
for a single unit of analysis. We continue to denote treatment by the dummy 
variable T. 
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We can formally represent the ITS model as 

Yt = bot + Tbl, + et. 19. 

Note that both the intercept, bot, and the treatment effect, blt, potentially 
vary over time. This model is not identified without imposing further structure 
on how these two parameters are related to time. Return to Figure 1, which 
presents the basic intuition behind both the regression discontinuity design and 
the ITS design. For the ITS model, this figure assumes that Yt, under both 
treatment and control conditions, grows linearly with time. This implies that 
for all t, the differences bo,,+ - bo, and blt,+ - bi, are constants. The dashed 
line shows the predicted evolution for Yt in the absence of the treatment. As 
shown in Figure 1, in this particular example, the treatment has caused a shift 
in Yt and a change in the slope. 

Equation 19 could be augmented by the inclusion of covariates, Xt. A fre- 
quent problem with time series analyses (unlike most cross-sectional analyses) 
is that the number of parameters in the model may be large relative to the num- 
ber of observations. As a result, the amount of information available to estimate 
the parameters may be small. This problem can be especially acute when there 
is strong dependence among the period-specific error terms, et. 

The ITS design has the same potential problems as the regression disconti- 
nuity design. An ITS analysis assumes that the future is sufficiently like the 
past that the past can be used to estimate how Yt would have evolved in the 
absence of treatment. As with the regression discontinuity design, Figure 2 
illustrates the bias in the estimate of the treatment effect that can result when 
this assumption does not hold. 

At the beginning of this section, we noted that the availability of aggregated 
cohort-level data alone is sometimes sufficient for estimating a treatment effect. 
This conclusion can be presented in the framework of an ITS model where we 
assume that Yt measures the average value for a cohort of individuals on some 
dependent variable (e.g. wages). Equation 19 is consistent with a specification 
in which all individuals receive the treatment. In this case, b,l represents the 
contemporaneous increase in wages caused by the treatment (e.g. training), and 
variation in bl over time represents the changes in wage growth caused by the 
treatment. What if only some known portion of the cohort, r, received training? 
As shown by Heckman & Robb (1985, 1986, 1988), we can still consistently 
estimate the average treatment effect for those who received training. In the 
situation where bl, does not vary with time, the average treatment effect for the 
treated equals (bl,t/r). 

The time series literature provides a host of sophisticated ways of modeling 
data. The core material in this literature is typically covered in a one- or even 
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two-semester advanced graduate-level econometrics course. Time and space 
limitations prevent us from providing even a brief overview of these models. 
The time series literature also contains alternative conceptions of causality to 
those considered here. The key ideas are those of Granger causality and cointe- 
gration (see Harris 1995 and Hendry 1995 for definitions and further discussion; 
see Holland 1986 and Sobel 1995 for connections with the counterfactual frame- 
work). Robins (1986, 1987, 1997) provides a full analysis of the estimation of 
causal effects when a treatment may be applied repeatedly and at multiple times. 

General Model Specification 
The methods that we want to consider in the remainder of this section all 
assume that we have individual-level data with pretest and posttest values on 
the outcome for both treatment and control groups. The goal is to use the control 
group (as well as possible multiple pretest measures on the treatment group) 
to forecast what the values of the dependent variable would have been for the 
treatment group in the absence of treatment. This goal can only be accomplished 
if we know or can effectively estimate what the relationship would have been in 
the absence of treatment between the pretest and posttest values of the treatment 
and control groups. 

Consider the simplest but by far the most common situation, where we have 
a single pretest and posttest value for the two groups. As Judd & Kenny (1981) 
demonstrated, even in a linear world there are at least three possibilities. These 
are shown in Figures 5a, b, and c. In all three figures, the observed values are 
identical. The estimate of the treatment effect, however, differs substantially, 
depending on what we assume would have happened to the treatment group if 
they had not been exposed to the treatment. 

As is discussed below, Figures 5a, b, and c characterize three traditional mod- 
els for estimating a causal effect with pretest and posttest data. To understand 
the assumptions behind each of these models, we first build a general model of 
which the three models are special cases. Consider the following model: 

Yit = bo, + Titbl + (Basic structural parameters) 

Xitb2, + TitXitb3 + (Observed heterogeneity) 20. 

Xit + Titai + eit (Unobserved heterogeneity), 

where ei = ppet-i + vit. The first term is bot, the intercept that varies with t 
in order to capture the general effects of time; bl is the treatment effect that we 
assume is time invariant. This assumption is not essential. Because we want to 
allow for the possibility that the treatment effect may vary across individuals, 
we assume that bl is the average treatment effect for the population of interest 
or the group for whom Xit = 0. 



ESTIMATION OF CAUSAL EFFECTS 

(a) yi ̂ it 

Treatment group 

_ _ 

} Treatment effect 

Control group 

Treatment 
Time 

(b) Y 

A 
Treatment effect 

Treatment 

Control group 

Treatment 
Time 

Figure 5 The true average treatment effect when unobserved heterogeneity does not differentially 
affect the rate of growth for both groups. 
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Figure 5 (Continued) 

Xit consists of the values of fixed, current, past, and future values of exoge- 
nous control variables that are relevant at time t. The two terms in the second 
line of Equation 20, which are interactions of the two terms of the first line 
with Xit, represent observed heterogeneity. The coefficients in b2, represent 
(possibly time-varying) shifts in the intercept that are a function of Xit. The 
coefficients in b3 represent interactions between Xi, and the treatment effect. 
We assume that these interactions are time invariant, but this assumption is not 
essential. 

The next three terms constitute the different components of the error term for 
Equation 20. The first two terms are measures of unobserved individual hetero- 
geneity that are analogous to the two terms for observed individual heterogeneity 
in the second line. The first term, Xit, represents an individual specific intercept 
that we allow to vary with time. Thus, the components of Xit capture both 
constant (or fixed) differences between individuals as well as the possibility 
that Yit may grow at different rates across individuals i in ways that are not 
captured in the Xs. 

The second term, Titai, measures the degree to which the treatment differ- 
entially impacts each individual i. As with the previous treatment effect terms, 
we assume that this treatment effect is time invariant. In general, we would 
expect that individuals who are most likely to benefit from the treatment (i.e. 
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individuals who have high ais) would self-select into the treatment. Unfortu- 
nately, longitudinal data typically do not provide a way to control for these dif- 
ferences. In most cases, it is only possible to estimate the average treatment ef- 
fect for the treated, not the average treatment effect for the population as a whole. 

The final component of Equation 20, ei, represents an individual-and-period- 
specific component of the error term. We want to allow for interdependence 
among the eit over time to capture what is known in the time series literature as 
transitory effects. We assume an autoregressive structure of order one (AR1), 
that is eit = peit-_ where p is the correlation between eit and eit_-. More com- 

plicated dependence in the form of an autoregressive moving-average structure 
could be assumed. These are reviewed in the standard time series textbooks 
cited above. 

Finally, vit is a pure time-specific error that is uncorrelated with anything 
else. To simplify the exposition, we assume that vit has constant variance across 
individuals. In the time series literature, vit is often referred to as the innovation 
in the process. Because it is purely random, it cannot be forecast. Typically, it 
is assumed to be a priori unknown to both the individual and the analyst. 

How does Equation 20 relate to Figures 5a-c? Assume for the moment 
(and for most of our discussion of longitudinal methods below) that all of the 
heterogeneity is represented by the unobservables. Standard techniques can be 
used to eliminate differences that are a function of observed Xs. When esti- 
mating the treatment effect, we would like the treatment and control groups to 
be identical, at least conditional on X.12 Our concern is that the two groups 
may also differ in terms of the unobservable components found in Equation 20 
because assignment to the treatment group may be a function of unobservable 
characteristics. The question then is whether there are techniques that can elim- 
inate potential differences between the treatment and control groups that are 
a function of the unobservable components in Equation 20. After eliminating 
differences due to X, can we "control out" the effects of the unobservables that 
are potentially related to treatment assignment? 

In Figure 5a, in the absence of a treatment, the parallel lines for the two 
groups indicate that the differences between Yit for individuals in the treatment 
and control groups (on average) remain constant over time. This case is con- 
sistent with a model in which unobserved differences between the treatment 
and control group are a function solely of a Xi that is time invariant or fixed, as 
would occur if we had omitted an X that was constant over time and correlated 
with the treatment variable. For example, if we were estimating the effects of 
additional schooling on wages, there might be unmeasured and thus unobserved 
components of family background that need to be controlled. 

12In the linear models used in our exposition, it is only necessary that the expected values of the 
components on the right-hand side of Equation 20 be identical for the treatment and control groups. 
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Figure 5b illustrates a situation in which, in the absence of treatment, the 
growth rate for Yi, differs for individuals in the treatment and the control groups. 
Assume that the .it change linearly with time such that 'it - it- = ti, where 
ri is a constant for each individual i for all t. In Figure 5b the rate of increase 
(in the absence of the treatment) in .it, ti, is higher for those in the treatment 

group than for those in the control group. As an example, more intelligent 
individuals may be more likely to continue in school, but whether they are in 
school or not (that is, whether they receive the treatment or not), they may still 
learn faster than individuals with less intelligence. 

Figure 5c might result in two different ways. First, as in Figure 5b, the rate of 
increase in Ait, ti, may differ between the treatment and control group. Here, 
however, the rate of increase is greater for those in the control group than 
for those in the treatment groups. For example, an increase in the incidence 
rate of disease might be greater in a control group if willingness to take other 
unobservable preventive measures (unrelated to the treatment regime itself) is 
greater on average for those in the treatment group. 

A second circumstance when Equation 20 is consistent with Figure 5c is 
when p in Equation 20 is positive. In this case, if assignment to the treatment 
group instead of the control group is a function of eit, then assignment is a 
function of transitory components of the unobservables. If assignment is only a 
function of transitory components, then over-time differences between the two 
groups would shrink to zero in the absence of treatment. 

A number of empirical examples exist where assignment to the treatment 
group is a function of transitory components of the unobservables. The clas- 
sic case, which reverses the labeling of the treatment and control groups in 
Figure 5c, is where individuals who are experiencing low wages in the near 
term are more likely to enroll in a job-training program because they experi- 
ence lower opportunity costs (Ashenfelter 1978, Ashenfelter & Card 1985). 
Regression toward the mean in this case produces an apparent training effect 
because the wages of individuals who received training would have increased 
on average (regressed toward the mean) even in the absence of training. This 
case differs from the one presented in Figure 5c in that the treatment program 
is compensatory-individuals with the lower wages are in the treatment group. 

Several approaches are available to consistently estimate the treatment effect, 
bl, in Equation 20. The most obvious, but often difficult method, would be to 
use panel data to fully estimate a complicated model specification such as 
Equation 20. If the model is properly specified, then the treatment effect bl can 
be consistently estimated. In general, it will only be possible to estimate models 
of this type of complexity if one has multiple pretest and post test measures of 
Yi. The technical issues involved in estimating models of this type vary across 
different model specifications. 
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Alternative Methods 
Over the years, a number of simple methods for estimating treatment effects 
have been proposed. These include charge score analysis, the analysis of co- 
variance, and their generalizations. We now consider these models and the con- 
ditions under which they give consistent estimates of the treatment effect, bl. 
An extensive literature has argued the relative merits of these different ap- 
proaches (see Judd & Kenny 1981; Holland & Rubin 1983; Allison 1990). 

The appropriateness of a model depends on whether it provides a consistent 
estimate of the treatment effect in a particular context. This depends on whether 
the model's assumptions are congruent with the underlying process that gener- 
ates the data. The appropriateness of a model for a specific situation can only 
be determined through theoretical and empirical analysis. No one statistical 
model is a panacea. 

The problem of whether a model is consistent with an underlying process that 
generates Yit is potentially complicated. As we discuss below, if one is to have 
confidence in one's results, it is essential to test the appropriateness of one's 
model specification. But what constitutes a proper model specification? As 
discussed above, one approach to consistently estimating the treatment effect 
in a longitudinal model is to attempt to specify and estimate a full model 
specification for Yi. To accomplish this, it may be necessary to have multiple 
pre- and posttest observations on Yit. 

Our above discussion of Rubin's and Rosenbaum's propensity score, how- 
ever, suggests that estimation of the full model for Yit may not be necessary to 
correct for the effects of assignment. We demonstrated that if we could condi- 
tion on the probability of assignment (or at least on those factors that determine 
assignment), the treatment effect could be consistently estimated even in the 
presence of omitted variables. 

Does this mean that we can get away with not estimating the full model for 
Yit ? As Heckman has argued repeatedly over the years, in many situations this 
is not likely to be possible. If individual choice is involved in the assignment 
process, it is likely that individuals will choose to be in the treatment and control 
group based on the consequences of treatment for their future Yt. In this case, 
individuals (at least crudely) use the previous history of their Yit, plus the total 
history of Yit for others, both pre- and posttreatment, to project the future values 
of their Yit under both the treatment and control. If so, the assignment process 
will be a function of the parameters of the model that the individual uses to 
predict future Yit. 

The question then is what model is the individual using to predict their 
future Yit? If it is simpler than the full model, then it may well be possible to 
condition on only those components of the model that determine assignment 
and consistently estimate the treatment effect. In many situations, it is unclear 
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why an individual would not use something like the full model to predict future 
Yit. Thus, we may be stuck with having to try to specify and estimate the full 
model that generates Yi. Of course, the greatest concern is that the individual 
may be using a prediction model that is more complicated or more accurate than 
the one used by the analyst. This might be due to the fact that the analyst has 
used too simple a model and/or that the individual has access to information that 
the analyst has no way of incorporating into her model-either directly through 
observed Xs or indirectly through a particular specification of the structure of 
the unobservables. In this situation, it may simply be impossible to consistently 
estimate the treatment effect. 

CHANGE SCORE OR FIXED EFFECTS MODELS Change score or fixed-effect 
models are a common and simple method for estimating causal effects when 
pretest and posttest data are available for separate treatment and control groups. 
The basic model can be formalized in two ways. The standard change-score 
model is 

(Yit - Yit-) = co + TiCl + (Xit- - Xit-)c2 + uit, 21. 

where Ti = 1 if the individual received the treatment (and Ti = 0 otherwise), 
co = bo, - bo,-,, cl = b\, c2 = b2, and uit = i - eit- l. This model can also 
be formalized as a fixed effect model making its relation to Equation 20 more 
transparent: 

Yi b, + Titbl + Xitb2 + i + eit, 22. 

where Xi is a time invariant or fixed individual specific effect and the eit for 
individual i and across time are assumed to be uncorrelated. The fixed-effect 
formulation allows for the possibility that multiple pretest and posttest out- 
comes may be observed on each individual. The model implies that there are 

permanent fixed differences between individuals in their Yit. As a result, as the 

process evolves from time t - 1 to time t there will be regression toward the 
mean in Yit, but the regression will be toward the individual specific mean of 
Yit not the overall population mean of Yit. 

Because the Xi terms represent all fixed, time-invariant differences between 
individuals, the effects of constant Xs are absorbed into iX. This is most 

apparent in Equation 21, where we see that only the effects of Xs that change 
over time are estimated. The fixed-effect model is equivalent to a standard re- 

gression model where a separate dummy variable has been included for each 
individual, which is then estimated by OLS. Alternatively, Equation 21 can be 
estimated by OLS. Heckman & Robb (1985, 1986, 1988) show that if we know 
the identity of individuals who will receive the treatment, then the fixed-effect 
model can be estimated from cohorts based on repeated cross sections. 
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As can be seen from Equation 22, the fixed-effect model is a constrained 
version of the general model in Equation 20 because it assumes there is no 

transitory component to the error term (p = 0) and the effect of the Xit are 
invariant with respect to time (b2, = b2). The first constraint implies that 

any unobserved differences between the treatment and control groups must be 
constant over time, as shown in Figure 5a. As with all the longitudinal models 
we consider, the fixed-effects model also assumes that the effect of the treatment 
is constant across individuals (b3 = ai = 0). If this is not the case, then the 
treatment effect estimate is a consistent estimate only of the average treatment 
effect for the treated, not the average treatment effect for the entire population. 

The fixed-effect model will only provide consistent estimates of the treatment 
effect if Equation 22 correctly models the time series structure of Yit or if 
the fixed effects, Xi, are the only unobservables that determine assignment to 
the treatment group. Framed in terms of Heckman's concern above about the 

consequences of assignment due to individual choice, the fixed-effect model 
will provide consistent estimates of the treatment effect only if assignment is a 
function of the fixed effects in Equation 20. However, it only makes sense for an 
individual to make choices this way if in fact Equation 22, the pure fixed-effects 

specification, is the correct model for Yi,. 

DIFFERENTIAL RATE OF GROWTH MODELS In many situations it may be the 
case that not only are there fixed unobserved individual differences, Xi, but that 
there are differences across individuals in the rate of change in Yit. We allow for 
this possibility by permitting Xit to vary with time. The simplest case is where 
we assume that the Xit grow linearly but at different rates across individuals 
(i.e. Xit - it-l = ti, a constant growth rate for individual i across all t). 
Figures 5b and c are illustrative of this type of process. For example, consistent 
with Figure 5b, we might believe that some individuals learn faster than others, 
or that because of previous education and training some individuals' wages 
would grow faster than others. 

The differential growth rate model can be estimated as a standard regression 
model using OLS by including a dummy variable for each individual entered 
in the equation by themselves and also interacted with time. Alternatively, the 
model can be estimated by applying OLS to the double difference of both 
the right- and left-hand sides of Equation 20. If .it grows quadratically or as 
a function of even a higher-order polynomial in time, this can be dealt with 
by differencing further.13 The differential growth rate model will consistently 

13 In these models, the variance of the outcome or equivalently of the error term may grow without 
bound. As a result, these models do not have a typical autoregressive moving-average structure. We 
know of no methods for estimating the differential growth rate model when it includes a transitory 
auto-regressive component. 
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estimate the treatment effect only if it accurately models the process generating 
Yit or assignment is only a function of an individual's fixed effect and individual 
growth parameter (Heckman & Robb 1985, 1986, 1988). 

ANALYSIS OF COVARIANCE MODELS The most common model used to es- 
timate causal effects when both pretest and posttest data are available is the 
analysis-of-covariance model. In its simplest form, the model is 

Yit = bo + Yit-ly + Titbl + uit, 23. 

where bl is an estimate of the treatment effect and Equation 23 is estimated 
by OLS.14 The coefficient y is equal to the pooled within-treatment group 
regression of Yit on Yi-l.. If uit has constant variance (which is generally 
assumed and which we also assume), then in the absence of treatment, y is 
equal to the correlation between Yit and Yit_ , (that is, the intracluster correlation 
with each individual considered a separate cluster). As a result, when uit has 
constant variance, y must be less than or equal to one. It measures the degree 
to which each individual's Yit regresses between times t - 1 and t toward the 
overall mean of Yi. This regression toward the mean differs from that in the 
fixed effects model where the individual Yit regress toward individual specific 
means. 

To simplify the exposition, consider the properties of the analysis-of-covar- 
iance model in the absence of treatment for all individuals. If we generalize 
to allow for multiple time periods, then the analysis-of-covariance model is 
equivalent to an autoregressive model of degree 1: 

Yit bo, eit, 24. 

where eit = peit-i + .it. Here p is the correlation between temporally adjacent 
ei, and vit is pure random error that is assumed to be independent of everything. 
bo, is a time-varying intercept that follows the generating equation bo,+0 - bo = 

p(bo, - bo0_,). This model is a constrained version of Equation 20. It makes 
the strong assumption that all differences in Yit across individuals are transitory. 
There are no fixed or permanent differences or differences across individuals in 
the growth rates of their Yit. Thus, Equation 24 implies that between Yit-, and 
Yit there will be regression toward the mean of a very strong form. Yit across 
all individuals regress toward the same grand mean. 

14As written, econometricians would typically interpret Equation 23 as indicating that i is deter- 
mined in part by its lagged value Yi_ 1. Under this interpretation, Equation 23 should be estimated 

using instrumental variables, because under almost any reasonable assumption about the error 
structure, Yi-,l will be correlated with uit, invalidating OLS. Heckman & Robb (1985, 1986, 
1988) point out that equations with lagged Yi,s can be dealt with by putting them in reduced form. 
This strategy then yields equations similar in form to Equation 20 which can be dealt with by the 

techniques discussed here and in their papers. 
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If Yit is in fact generated by Equation 24, then p = y. In most situations, 
however, we would expect that Yit would have both fixed and transitory com- 
ponents. A simple specification that captures this idea is 

Yit = bo, + Xi + eit, 25. 

where eit = peit- + vit and where p and vit are as in Equation 24. In this 
case, y = [var(Xi) + pvar(eit)]/[var(Xi) + var(eit)] which is necessarily 
greater than or equal to the correlation p. If there is no transitory component, 
var(eit) = 0, and y is still less than one because regression toward the mean is 
due to the pure random component, vit. If there is no permanent component, 
then y = p. 

The key to understanding the analysis-of-covariance model is to rewrite 
Equation 23 as 

(Yit - Yitly) = bo + Titbl + uit. 26. 

Equation 26 shows that y is a measure of the degree to which Yit should be 
adjusted by its previous pretreatment value, Yit_-. Specifically, y measures the 
degree to which the pretest difference in the treatment and control group Yit-I 
should be used to correct the post-treatment difference in Yit in estimating the 
treatment effect: 

Treatment effect = bl = (Yt 
- 

Yt) - y (Yi t- Y ). 27. 

If y = 0, then no adjustment is needed. The treatment effect is simply 
equal to the average difference between the treatment and control group in Yit. 
This would be appropriate only if the Yit were a function of the pure random 
component of the unobservables, vit. 

If y = 1, then the Yit are fully adjusted. The treatment effect is then equal 
to the difference in Yit between the treatment and control groups net of their 
initial difference. In the latter case, the analysis of covariance model is equiv- 
alent to the change-score/fixed-effect model discussed above. This would be 
appropriate if there is no transitory component in Equation 26. 

Assume that Equation 25-which models Yit as a function of fixed, transi- 
tory, and random effects-holds and that we estimate y from the data. In this 
case 1 > y > p. y = 1 only if there is no transitory component or random 
component, that is, vit in Equation 25. y = p only if there is no fixed effect 
term in Equation 25.15 

15If there is measurement error in Yit s, the measurement error will bias downward the estimate of 
y, resulting in an underadjustment for pretreatment differences between the treatment and control 
groups. This underadjustment will bias the estimate of the treatment effect. 
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Consider the assignment of individuals to the treatment and control groups. 
If assignment is a function of the fixed effects i, then no adjustment is needed 
to the pretreatment difference in Yi. Using the estimated y in Equation 27 will 
overstate the treatment effect because the correct adjustment factor is y = 1. 
The analysis-of-covariance model will only give a consistent estimate of the 
treatment effect in this situation if the estimated y = 1. This will occur, how- 
ever, only when there is no transitory term, eit, or random component, vit in 
Equation 25. In this case, the prediction of Yit from previous values is trivial 
because Yit is a constant. 

If assignment were a function of only the transitory component, eit, and 
Yit depends on a fixed component, using the estimated y would result in an 
understatement of the treatment effect because the correct adjustment factor is 
y = p, which is necessarily less than the estimated y. In general, the estimated 
y will be the correct adjustment factor only if selection is on Yit-l. In this 
case, in the absence of treatment, the expected shrinkage in the difference in 
the pretreatment means of Yit for the treatment and control groups and their 
posttreatment difference is proportional to y. 

But under what circumstances would it make sense for assignment to be based 
only on Yit- ? As Heckman has argued, if Yit were generated according to, for 
instance, Equation 25 or the even more complicated Equation 20, it would be 
reasonable to assume that an individual would want to use values of Yit prior to 
Yit- to predict Yit. In essence, one could imagine an individual (at least crudely) 
estimating their individual specific fixed effect and growth rate so that they could 
accurately predict what their Yit would be in the absence of treatment. Assum- 
ing that is known, values of Yit prior to Yit- could be ignored only in the 
situation where Yit had a simple AR1 structure, i.e. where Yit is generated by 
Equation 24. This leads us to a strong and negative conclusion about the 
applicability of the analysis-of-covariance model. An analysis of covariance 
generally will only properly adjust for the pretreatment difference in outcomes 
between the treatment and control group if treatment assignment is solely a 
function of the pretreatment outcome, Yit-l. In general, an individual would 
only choose his assignment based on Yit-_ if prior values of Yit or other rel- 
evant information were not available or if Yit followed an AR1 specification, 
as in Equation 24. The latter condition is an extremely strong assumption be- 
cause it implies that all unobserved differences between individuals are only 
transitory. 

COVARIANCE STATIONARY MODELS The change-score and analysis-of-co- 
variance models (or, similarly, their specifications respectively as a pure fixed- 
effect model and a pure transitory-effect model) represent extreme model 
specifications. These two extremes make strong assumptions about how, in 
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the absence of treatment, the difference between the pretreatment mean Yit for 
the treatment and control groups will change during the posttreatment period. 
In the change-score model, the assumption is that there will be no change. For 
the analysis-of-covariance model, the assumption is that there will be shrink- 
age of a specific amount. In particular, the shrinkage will be equivalent to the 
amount of regression toward the mean observed at the individual level. Thus, 
although p is estimated from the data, the analysis-of-covariance model simply 
assumes that this is the correct shrinkage factor. 

In most instances, we would like to use a method that allows for both fixed and 
transitory effects in the generation of Yit or at least in the assignment process. 
Equivalently, we would like to estimate how much adjustment is appropriate 
when estimating the treatment effect using pretreatment differences between 
the treatment and control groups. The change score and analysis-of-covariance 
models simply assume alternative levels of adjustment. 

Heckman & Robb (1985) show that it is possible to estimate a model that 
combines an individual fixed effect along with a transitory AR1 component. In 
fact, all that needs to be assumed is that the process is covariance stationary.16 
This model is consistent with most autoregressive moving-average specifica- 
tions, including the change-score/fixed effect and analysis-of-covariance mod- 
els. Assume that you have at least three equally spaced (in time) measures of 
Yi, at least two of which occur prior to treatment. Label these times respec- 
tively t - 2, t - 1, and t, with only t occurring after the treatment. Assuming 
there are no relevant Xs for the moment, it is easy to show through multipli- 
cation and two substitutions that the covariance between Yit and Yit-_ is equal 
to 

Cov(Yit, Yit_-) = Cov(Yit-,, Ti)bl + Cov(Yit, Yit-2), 28. 

where Ti is as before a dummy variable treatment indicator and bl is the treat- 
ment effect. All three of these covariances can be estimated from the data, 
allowing us to solve out for bl. If additional time periods are available, the 
assumption of stationary covariance can be tested. An overall test of the model 
can be obtained by comparing alternative estimates of the treatment effect using 
different time-period triplets. 

Testing Alternative Models 
The point of the above discussion is that traditional methods such as change- 
score analysis and the analysis of covariance are flawed because they make 
strong assumptions that are rarely examined and almost never tested. Without 

16A process is covariance stationary if it has a finite mean and finite variance and the covariance 
between any two Y over time is only a function of the time elapsed between them. 
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confidence that their assumptions are valid, resulting estimates of a causal effect 
have no guaranteed validity. 

When only a single pretest measure and a single posttest measure are avail- 
able, the appropriateness of alternative models cannot be tested. At best one can 
only make arguments for one specification as opposed to another on theoretical 
grounds. Hopefully, by embedding these models in Equation 20, we have made 
it clear to the reader what the nature of these arguments would have to be. With 
multiple waves of data, however, it becomes possible to determine whether a 
particular specification is appropriate for the data being analyzed. 

One approach would be to use both pre- and posttest data to determine 
the structure of the unobservables in the data. This is a standard topic in 
the analysis of panel data. An extensive collection of relevant papers is pro- 
vided in Maddala (1993). We note that it can often be difficult to determine 
which among the possible specifications is appropriate because different spec- 
ifications can produce similar patterns in the data. Also, standard time se- 
ries methods typically will not work because they assume that the error term 
consisting of different unobserved components is uncorrelated with any of 
the observed right-hand-side variables. In this paper, we are interested in sit- 
uations where the treatment variable may be correlated with unobserved 
components. 

Fortunately, less-sophisticated and more easily applied methods can be used. 
In order to consistently estimate the treatment effect, it is not necessary that 
we correctly specify the full structure of the unobservables. Rather, we must 
only control for those aspects of the unobservables that differ between the treat- 
ment and control groups. Heckman & Hotz (1989) discuss an imaginative way 
of testing this condition that is also simple. One should take all the pretest 
observations and then analyze them as if they consisted of both pretest and 
posttest data, testing whether a treatment effect is significant on the pretest 
observations alone. Because no treatment has yet occurred, no treatment effect 
should be observed. If a pretreatment effect is found, this is strong evidence 
that one's model is misspecified. Whatever procedure has been used to control 
for unobserved differences between the treatment and control group has failed 
because the significant pretreatment effect indicates that there are still differ- 
ences between the two groups that have not been accounted for. The posttest 
data can be used in a similar way. In this case, no treatment effect should be 
found if the model has been correctly specified, because no additional treatment 
has occurred. It may, however, be necessary to account for the possibility that 
the treatment effect dissipates over time. A third possible test is to enter past 
and future values of the outcome as regressors. If the model is appropriately 
specified, they should have no effect on the current outcome (Heckman & Hotz 
1989). 
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CONCLUSION 

We have tapped only a fraction of the methods and literature that has appeared 
over the past couple of decades relevant to estimating causal effects. Our inten- 
tion has been to focus on methods that are relatively accessible and likely to be 
useful to quantitatively oriented researchers. We hope the reader is impressed 
by how far the research literature has gone beyond standard regression models. 

The appropriateness of alternative models for the estimation of a causal effect 
depends both on the structure of the data that are available and on the nature of 
the substantive problem. Given the large number of options, it is critical that 
researchers, to the degree that it is possible, test for the appropriateness of a 
chosen specification. Otherwise, a variety of methods should be implemented 
to determine how robust the treatment effect estimate is to alternative methods. 

Besides providing the reader with an introduction to a variety of methods that 
can be used to estimate causal effects, we hope that we have also presented a 
conceptual scheme that will be useful to all researchers in trying to think through 
their own particular analysis problems. In particular, we have shown how a 
counterfactual interpretation of causality leads to a precise definition of what is 
meant by a causal effect. Furthermore, this definition points to two important 
sources of bias in the estimation of treatment effects: (a) initial differences 
between the treatment and control groups in the absence of treatment, and (b) the 
difference between the two groups in the potential effect of the treatment. The 
latter component is particularly important in situations where there is likely to be 
selection into the treatment group based on the projected effects of the treatment. 

The estimation of causal effects continues to be one of the most active areas 
of research in both statistics and econometrics. Perhaps one of the most impor- 
tant new developments is the investigation of the quality of estimates that are 
produced by the different techniques we have discussed. Rubin and Rosenbaum 
are actively involved in applying matching methods based on the propensity 
score to different problems. Heckman and his coworkers have been examining 
matching as well as other methods. It is important to note that they have been 
extending the methods discussed here to semi-parametric and nonparametric 
approaches. Their findings (Heckman et al 1997a,b, 1998a,b), using the Job 
Training Partnership Act data, suggest that at least in some circumstances, the 
assumption of specific functional forms can be an important source of bias. 
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